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1.0 INTRODUCTION

Solution of the partial differential equations of fluid motion by finite-difference
techniques requires that the computational domain and dependent variables be represented
on a network of discrete points. The distribution of these points is influenced by the choice
of the coordinate system, the order of the numerical approximation, and the location of
strong geometric and flow-field gradients. Typically, body-fitted, curvilinear coordinate
systems are used to simplify the application of boundary conditions. Construction of grids
with the requisite smoothness and point clustering remains one of the most nettlesome tasks
associated with the solution of the equations of fluid motion. This is especially true for
three-dimensional (3-D) configurations as the effort requived to generate an acceptable mesh
increases rapidly with increasing geometric complexity and quickly becomes prohibitive. The
considerable effort (e.g., Refs. 1 through 4) that has been devoted to the development of
reliable methods to mitigate these difficulties mz2y be broadly put into two groups, (1)
domain-decomposition and (2) grid-adapting methods.

Domain-decomposition techniques subdivide the computational domain into simpler
subdomains which admit a more easily constructed mesh. Several strategies have been
explored to subdivide the domain and establish communications among the subdomains.
One group of approaches, the grid-patching or zonal methods, uses common or shared
boundaries and another uses embedded or overset grids to subdivide the domain. The work
of Rubbvert and Lee (Ref. 5) and Lee (Ref. 6) is typical of the methods which construct a
giobal mesh from subdomains which share common boundaries. They generate a global
mesh by solving grid-generation equations on all subdomains <‘multaneously and by
requiring that the grid lines be continuous across sub ' ymain boundaries. A difficulty with
this approach is that irregularities which occur in corners and along boundaries impose
constraints on the algorithm used to solve the flow equations. Lasinski et al. (Ref. 7) take an
alternate approach and solve for the flow field on each subdomain separately with
communication among the grids established by the transfer of boundary data. In their
approach, the patches overlap one poin* with common points on the boundary to obviate
interpolation for boundary data. Hessenius and Pulliam (Ref. 8) have modified the
approach of Ref. 7 to allow characteristic boundary conditions to be applied at subdomain
boundaries. Rai (Ref. 9) further generalized the method to admit independent grids in eaci:
subdomain. Communication across grid boundaries is accomplished by means of special
difference formulae at the boundaries which maintain conservation properties across the
subdomains. Similar methods have been developed by Miki and Takagi (Ref. 10). Holst et
al. (Ref. 11) have applied the technique to targe 3-D grids.
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The grid-embedding or oversetting techniques do not require common boundaries
between subdomains, but rather, a common or overlap region is required to provide the
means of matching the solutions across boundary interfaces. The usual procedure uses
interpolation of embcdded boundaries to provide the necessary communication among the
grids. Atta (Ref. 12) and Atta and Vadyak (Ref. 13) employed this approach to solve the
full-potential equation in two and three diriensions. Their implementations used a separate
implicit solution algorithm for each mesh. S:eger et al. (Ref. 1<), Benek et al. (Ref. 15), and
Benek et al. (Ref. 16) developed a ‘‘chimera’’ scheme in two and three dimensions for the
solution of both a linearized flow model and the Euler equations. Lombard and
Venkatapathy (Refs. 17 and 18) use overset grids aligned with shock waves to produce highly
resolved solutions of inlet flows. Fuchs (Ref. 19) applied the method to internal flows, and
Rai (Ref. 20) uses a combination of patched and overset grids to solve rotor-stator
interactions. Dougherty (Ref. 21) and Dougherty et al. (Ref. 22) have extended the grid-
embed.ding technique to allow movement of embedded grids to follow time-dependent
motions. A closely related approwch developed by Wedan and Scuth (Ref. 23) employs a
globai Cartesian mesh in which the body s embedded. Grid points that lie within the body
are located and automatically excluded from the solution process.

The second technique, grid-adapting methods, causes the mesh to evolve with the
solution of the flow equations. These methods seek to make the most efficient use of
avzilable mesh points, as well as to reduce the grid-generation effort by automatically
clustering grid points to regions of high gradient. An advantage of the method is that the
initial mesh does not need to anticipate accurately all regions of large flow gradients. There
are several implementations of the method. Gnoffo (Ref. 24) models the mesh as a network
of springs whose constants are determined from the flow gradients. Nakahashi and Deiwert
(Ref. 25) extend this idea to allow both linear and torsional springs and have applied the
method to both steady and unsteady flow problems. Ghia et al. (R=f. 26) cougi the gric-
evolution equation to the flow equation by requiring that the coefficient of the convec* ve
term in the flow model be minimized. Brackbill (Ref. 27) and Saltzman and Brac’ bill (Ref.
28) use variational techniques to produce grid-evolution equations. Berger (Ret. 29) and
Berger and Oliger (Ref. 30) developed a dynamic grid refinement technique which embeds
successivelv finer grids to resolve flow gradients as they develop in the solution process.
Unfortunately, the adaptive techniques have not been sufficiently developed to allow an
assessment of ineir applicability to general 3-D flows.

This report documents the development of the chimera grid-embedding technique
described in Refs. 14, 15, and 16. We chose the grid-embedding approach for solution of
complex 3-D flows because it provides the flexibility to employ boundary-conforming grids
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on component parts of the geometry, to refine the mesh selectively in regions 0" interest, and
to permit the solution of different flow models on the component grids. Because of its
structural diversity, we call our implementation a chiinera scheme after the creature from
Greek mythology which is compounded of incongruous parts. The method is a
generalization of the versatile grid-patching/zonal approach, and therefore, includes their
advantages. Thus, advances made in the latter approach have an immediate counterpart in
the chimera technique. Although the chimera approach allows different flow models to be
solved on each subdomain (e.g., Refs. 11 and 31), the present implementation is re<*ricted to
the solution of the Euler equations on each grid.

2.0 GENERAL DESCRIPTION

Domain-decomposition technigques have two principal elements, (1) decomposition of
the computational domain into subdomains and (2) communication among the subdomains.
In the chimera approach, each subdomain requires a separate, independent grid generation
by any acceptable technique. Each subdomain is chosen to lessen the effort required to
construct an acceptable mesh, and perhaps, to isolate a particular region o1 the flow (e.g.,
where viscous effects are important). As explained in 3ection 3.2, the chimera
implementation increases the flexibility of subdomain selection by removing regions of a
mesh common to an embedded grid. That is, an embedded mech introduces an artificial
boundary or *‘hole’’ into the mesh in which it is embedded. Because the regions interior to
the hole do not enter into the solution process, intergrid coramunication is simplified since
communication among the grids is restricted to the transfer of boundary data. Appropriate
boundary values are interpolated rrom the miesh or meshes in which the boundary is
embedded. The chimera procedure naturally separates into two parts, (1} generation of the
composite mesh and associated interpolation data and (2) solution of the flow model or
models on the composite mesh. Each part is embodied in a separate computer code,
PEGSUS and XMER3D. PEGSUS takes the independently gensrated component grids and
the embedding structure as input and automatically constructs the composite mesh and
interpolation data which are output. XMER3D takes the PEGSUS output and flow
specifications as input and solves the appropriate flow equations on each grid.

3.0 PEGSUS

Automatic generation of a composite mes!. from the input component grids requires
PEGSUS to (1) establish the proper lines of communication among the grids through
appropriate data structures, (2) construct holes within grids, (3) identify points within holes,
(4) locate poirts from which boundary values can be interpoiated, and (5) evaluaie
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interpolation parameters. In addition, PEGSUS performs consistency checks on
interpolation data to assure its acceptability and constructs output files with the data
structure used in. XMER3D. A structure chart of PEGSUS is given in Appendix A.

3.1 EMBEDDING HIERARCHY

The data structures required o manage the flow of data among the grids can become
cumbersome unless some restriction is placed upon the . 'owable interactions. A hierarchical
form follows naiurally from the embedding process; embedded grids occupy a lower level of
the hierarchy than the grids in which they are embeddud. Hierarchical forms also have a
convenient mathematical representation as graphs. Such a representation greatly simplifies
the development of data structures required to r:anipulate the transfer of data among the
grids tv identifying the communication links that must be established. To facilitate the
disc .ssion, introduce the following nomenclature: designate grids which comprise level ¢ of
the hierarchy as Gg;, i = 2, ... In general, grids on a giver level ¢ are embedded within
grids on level ¢ — 1, overlap other grids on level ¢, and have one or more grids on levels ¢ + 1
embedded within them. Such an arrangement is shown *-. Fig. 1. The figure includes the
corresponuing graph (See Section 3.4). The lines connecting the ; -ids indicate the intergrid
communication links that must be supported by the data structures and suggest the
complexity involved.

It is not necessary to include all the interactions shown in Fig. 1. Very general
configurations can be considered with a restricted .lierarchy < the expense of additional
labor in the construction of the component gric- The in.cractions permitted by the
hierarchy ador:ed for the work described in this report 2re shown in Fig. 2; grids on level ¢
are constrained to be completely contained within a single grid on level ¢ — 1, and grids on
level ¢ mu. Ye disjoint. The major advantages of the adopted structure are the
simplifications it provides in the construction of the data structures and in the limitatiors on
the searches required to locate points in other grids which may serve for interpolation of
boundarv ‘ata.

3.2 HOLE GENERATION

Because each component mesh is generaed independently, complications frequently
arise when the grids are embedded. For example, points of an enclosing n.esh, G, ,, may be
found to lie within a solid boundary contained within an embedded grid, G;, ;. Such points
lie out of the computational domain and must be excluded fror: the solution process. In
addition, a large number of points must be interpolated if every point common to G, ; and
Giy,j(i-e., Geyyj N Gyy) is to be updated. Lombard and Venkatapathy {Ref. 17) found that

10
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such extensive interpolation can degrade global accuracy when there is a considerable
difference in mesh cell size (i.e. spatial resolution) between the grids G, ; and G,.,,. To
avoid such complications, only the boundary of cach embedded grid is updated; the points
of G, i contained within a subregion of G, , | ; are excluded from the solution on G; ;. Thus,
the embedded mesh, G, _ j iniroduces an artificial boundary or “‘hole’’ into G, ;. The only
computational requirement is that there remains a sufficient overlap (i.e., points in
G, ; N G; .1, and exterior to the hole) to support an interpolation for the outer boundary of
G, ., j from points in G, ; (Fig. 3). Similarly, the overlap must be sufficient to allow the hole
boundary in G, ; to be interpolated from points in G, ., ;. A minimum overlap exists that is
dependent on the type of interpolation used.

A hole is constructed as follows: a surface, C, is introduced in0 G, ;. In general, the
surface encloses solid boundaries contained within th. embedded grid G, , | ; and serves as
an initial hole boundary. Whenever boundary-conforming compcnent grids are emploved,
the simplest choice for C is a level surface of G, ., j. A search of G; ; locates points interior
to C. These points are ‘‘marked’” for future reference by changing the value of an integer
array, IBLANK, corresponding to these points, from 1 to 0.

Figure 4 illustrates the details of the search procedure in twe dimensions. The procedure
is as follows: (1) Define the initial hole boundary by a level curve in G, ., (Fig. 4a). (2)
Construct outward normals, !:I. at each poiat, P, defining C (Fig. 4b). (3) Determine a
temporary origin, say P,, located within C by averaging the coordinates. {4) Desine a
**search’” circle about P, with radius R,,, where Ry, is the maximum distance from P, to
points on C (Fig. 4¢). (5) Test the magnitude of r, the position vector relative to P, for eve:,
point Pof G, .. If | r: 2 Rma\ P lies outside the search circle and hence need not be
considered turther. Whepcver | r— + < Rpax, P fails within the scarch circle and additional
testing is reqmred (6) Compute N R where '\ i the outward normal at the point P.on C
closest to P, and R is the position vector to P from P (Fig. 4d). If N Rp 2 (0, P iy outside

C; it N R < 0, P is inside C and IBLANK corresponding to this point is set to C.

The points of G, ; within the hole are excluded from the solution and are not usable as
boundary points. Therefore, additional points of G, , are identified as hole-boundary or
fringe points. Values of the unknowns at these boundary points wi!l be interpolated from the
embedded mesh, G, . ;. The boundary points are constructed from points in G, , which are
not hole points but which have nearest neighbors that are. Figure 5 illustrates the boundary
construction. The procedure is to examine the nearest neighbors (Fig. 5} f each point, P,
in G; at which IBLANK = 1. If a neighbor is a hole point, P is a boundary point. The
indices of the fringe points are added tc a list of boundary points which will require interpolated
data. The boundary point is also temporarily ‘‘marked’’ by setting the value of IBLANK
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to 2 nonpositive number which PEGSUS associates with G, ; ;. Once all the hole boundaries
in Gg; are constructed, the fringe point indices are added to a list of boundary points which
will require interpolated data. (Refer to Appendix B for details of the associated data
structures.) To simplify the logic of XMER3D, the vaiues of IBLANX corresponding to the
boundary points are reset to 0.

The primary function of the hole or artificial boundary iniroduced into a mesh, G, ;, by
an embedded mesh, G;,,;, is to exclude a region of G,; which mav fall within solid
boundaries contained in Gy, ) . It is possible for the reverse condition to exist. A region of
the mesh G¢ , ) ; may fall within solid boundaries of G ;. A two-dimensional (2-D) example is
given in Fig. 6. Because the mesh about Body 2 overiaps Body 1 in mesh G, ; in which it is
embedded, a region of G, ; about Body 1 must be excluded from the solution on G; ., ;.
The procedure for constructing such a hole boundary is similar to that described aL.ove. The
examples of the chimera scheme given in this report avoid such complications. 1he
interested reader is directed to Refs. 21 and 22 for examples which include holes induced in
embedded grids.

33 INTERPOLATION

As the separate grids are to be treated as independent entities, boundary conditions must
be supplied to each. The boundary conditions of the differential equations which model the
flow provide data only at the boundaries of the computational domain. Thus, other data
must be obtained for the subdomain boundaries which are not coinciGent with those of the
computational domain. Because the subdomain boundaries typically lie in the interior of the
computational domain where the differential equaiions are valid, it seems appropriate that
the solution of these equations should provide the necessary boundary data. There are
currently several approaches (e.g., Reis. 15, 16, 20, 29, and 31) (o obtain these data, but all
involve some form of interpolation of data in one mesh to provide '+ necessary data to
another.

Expericace with a 2-D application of the chimera grid-embedding scheme (Ref. 15)
indicates that difficulties can arise when a shock crosses grid boundaries. Figure 7 makes a
comparison of pressure distributions obtained from solution of the Euler equctions about a
supercritical airfoil on 2 single mesh and on a chimera grid. There is a mismatch in ihe
solutions in the neighborhood of the expansion preceding the shock. Examination of the
Mach number contours of the chimera-grid solutions (Fig. 8) reveals a considerable amount
of mismatch and hash in the overlap region near the shock/grid-boundary intersection.
Several factors could contribute—the nonconservative nature of the Tavior series

12
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interpolaiion; the reflecting boundary conditions imposed at the overlap; and the meager
extent of the overlap in the vicinity of the shock (Fig. 9).

There is much disagreement about the proper interpolation method to emnloy, especially
for cases in which shock waves or other regions of high gradier:ts cross grid boundaries. The
basis of concern is that interpolation schemes assume continuity of the interpolant. Regions
of high gradient require approximatiors to the higher derivatives of the solution, terms
which are typicaily neglected. As a result, several methods have been developed which
modify the numerical difference procedure applied at gnid interfaces to maintain a proper
representation of fluxes at the boundaries. The schemes proposed by Hessenius and Pulliam
(Ref. 8) and Rai (Ref. 9) are typical of such methods. Berger (Ref. 32) developed a
generalized difference scheme based upon the concept of a weak solution to the differential
equations anc has the advanizge that continuity of the interpolant is no: required. The
method was illustrated for the case of 2-D overlapping grids.

Several investigations have found factors other than the nonconservative interpolation to
be important. Eberhardt (Ref. 33) examined shock/grid-boundary interactions between
embedded grids. He found that a major factor in the interaction was the boundary
conditions imposed at the overlap boundaries. Characteristic or nonreflecting boundary
conditions reduced the mismatch at the shock, improved accuracy, and increased the
convergence rate for boun first- and second-order Taylor series interpolat on. (Similar results
are reported in Ref. 8.) Lombard and Venkatapathy (Ref. 17) found that a disparity in
spatial resolution can significantily affect the shock/grid-boundary interaction. They also
found the proximity of the boundaries (i.e. overlap) to be important, particularly whenever
a significant difference in mesh resolution exists.

Mastin and McConnaughey (Ref. 34) studied computational problems associated with
interpolation on coinposite grids. They showed that bilinear interpolation in two dimensions
is superior to a Taylor series expansion when higher order derivztives of the solution are not
important. They also found that a two-cell overlap was sufficient to provide accuraie
interpolation whenever the cell sizes of the overlapped grids are comparable. Simple
computations (Ref. 35) of the flow variables interpolated across an oblique shock on a
rectangular grid indicate that bilinear interpolation is superior to Taylor's series
interpolation.

We employ a trilinear interpolation for the 3-D chimera scheme. This method provides

an additional advantage of a more compact stencil. We also attempt to maintain a tour- to
five-cell overlap between grid boundaries. The interpolation scheme is coupled with

13
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nounreflective bound: -y conditions on the grid boundaries. (For mors dc.ils of the
interpolation, see Appendix C.) However, it remains possible that nonconservative effects
may be important for the acuracy of solutions near shock/grid-boundary interactions,
particularly in cases for which the spatial resolution between grids is comparable and in cases
with strong shocks.

3.4 DATA STRUCTURES

A chimera method requir the management of a large 2amount of grid and solution
information. It is necessary to keep track of the storage locations of the coordinates of each
grid, solution data on each grid, interpolation points, interpolated data, interpolation
stencils, points within holes, and the relationships among the grids in the hierarchy. In
addition;, the management function must be implemented in an automatic manner that is
transparent to the user. Fortunately, the computer scientists hz e developed the required
management techniques (e.g., Refs. 36 and 37). Unfortunately, implementing these
techniques in FORTRAN is not always straightforward.

Concepts which can be helpful for use with the data structure draw on ideas from the
theory of graphs (e.g., Ref. 38). The graphical representation of the grid-embedding
hierarchy used in this report is shown in Fig. 2. Each grid G ; is called a node of the graph.
However, a node may contain much more information than just the grid coordinates.
Additional information we have associated with each node includes grid-storage lu.ation;
number of points in each coordinate direction; location of the grid in the embedding
hierarchy; the precursor grid, G, _; x; number of descendants, G¢. ;.3 = 2, ...; location
of descendants; location of interpolation stencils; location of interpolauon coefficients;
location of interpolated boundary data; and location of hole or excluded points. Most of
these data can be stored in lists: connections amon the data are made through the use of
linked lists, and pointers (See Refs. 36 and 37). T.. illustrate, consider the management of a
single array containing spatial coordinates. The data are stored in a stacked or sequentiai
manner. Thus, it is only necessary to store the position of the first element (a pointer) in each
grid and the number of points in each coordinate direction on each grid (a linked list) to
locate the coordinates of any point. Details of the data structures are contained in
Appendix D.

Other ~pproache . to the data structures are possible. For example, Noiton et al. (Ref.
39) use a generalized grid structure similar to that used in finite-element methods. Each

14
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computational cell (or grid point) is numbered in an arbitrary manner as opposed to the
usual systematic ordering of points employed by finite-difference techniques. Instead, lists
of the indices of the points used in the finite-difference representation of each of the flow
equations are maintained. This procedure allows very different topologies to be used on
component grids and implicit interpolation for grid interfaces to be incorporated into the
scheme. The major disadvantage of the mmethod is the large storage overhead required for
the lists of points in the difference stencil.

4.0 XMER3D

The implementation of the chimera scheme must provide for the use of multiple flow
models. The simplest choice of models is the Euler equations for inviscid flow and the
Navier-Stokes equations for viscous flow. For purposes of demonstration of the method, we
solve only the Euler equations. However, because of the choice of numerical algorithm, the
exteasion to viscous flow is straightforward. The 3-D Euler equations are solved by the
implicit, approximate factorization algorithm of Beam and Warming (Refs. 40 and 41). The
implementation follows that of Steger (Ref. 42) and Pulliam and Steger (Ref. 43). These
formulations use explicit boundary conditions which provide a convenient method of
imposing the correct boundary conditions on the various grids with minimal changes to the
code. A version of the code (Benek, J. A. *‘Vectorized Implicit Algorithm for Solution of
the Navier-Stokes Equations,” unpublished, 1979) vectorized for the Cray computer served
as the basis for XMER3D (Appendixes D, E, and F).

4.' idE SOLUTION ALGORITHM AND GRID HOLES

Grid poirts that belong to a hole must be excluded from the solution. Once the points
have been located and identified (i.e. IBLANK = 0), it is a simple matter to modify the
i iplicit algorithm. The modification required is illustrated by considering the algebraic
system typical of numerical approximation of the flow equations.

Ao = F (1)

where A is the coefficient matrix assumed to be tridiagonal f ‘r convenience, ¢ is the vector
of unknowns, and F is a known vector. Let ¢;, ¢, and ¢« be elements belonging to a hole,
and let fy, f4, and f5 be values specified for ¢, ¢4, and ¢s. The equations may be partitioned
to isolate the hole
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an ap 0 0 0 N ‘ F|
0

a;y an a3 0 O &2 F,
0 ap:. aj3 a3, 0 : 0 O & F3
0 0 : ag ay as:- 0 O ¢ )= ( Fq Q)
0 0 -0 dsq 3ss - asg 0 Fs

0 0 ags - ag ag Fe
0 :

0 0 0 - ay ap ¢7 |

The desired modification must allow the application of the standard tridiagonal solution
algorithm and must not interfere with vectorization. These criteria may be satisfied if aj;,
a3y, a43, Ags, 234, and asg (i.c. the off-diagonal elements) are set to zero; ay;, ay, and ags (the
diagonal elements) are set to the identity; and Fs, F,, and F; are set to f3, fy, and fs. The
system takes the form

’auaufo 0 0. ‘ !4’1\ Fl‘
: -0
ajay : a3 0 0 & F2
-1 0 O0: ' fs
< 0 0 1 0: 0O <¢. ={ f, 3
0 0 1 s fs
0 0 ag ag ag b Fs
0o :
{ 20 0 0 ajgap p, F;

The hole logic can be incorporated into the algorithm so that vectorization is maintained.
The array IBLANK is defined for each point of the grid :f a point is within a hole, IBLANK
= 0; otherwise IBLANK = . A simple set of switches can be constructed that
automatically multiply each row of the coefficient matrix, A, by IBLANK

a; = aj ° IBLANK; 1 #)

ajj = a; ° IBLANK; + (1 — IBLANK)), i=]
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The known vector, F, can similarly be modified as
F, = F; « IBLANK, + (- lBLANK,) . fi

For applications to the Beam and Warming algorithm, ¢ corresponds to corrections to
the latest approximation " of the solution to the flow equation and

A 4)

Thus, the specified values of F; in the holes are zero (i.c., f; = 0, i = hole point). Since the
values of ®§ and ®% are determined by interpolation from th2 solution on another mesh, and
since the modified algorithm automatically produces ¢3, ¢4, ¢s = 0, the interpolated
boundary values ® and 5 are automatically preserved.

4.2 CONVERGENCE ACCELERATION

Additional changes to the solution algorithm were made to improve the convergence
rate. These include modifications to the numerical dissipation terms and modification of the
time step. The explicit dissipation term in Ref. 43 has the form

e 171 [(Va)} + (FaR + (FaRlIQ 5]

where J is the Jacobian of the coordinate transformation; 6 = (e, ou, @V, @W, €]/] is the
vector of dependent variables; densny, ¢; momentum components (Qu, gv, gw); total
energy, ¢; and ¢ is a user-supplied constant of 0(At), where At is the time step. Equation (5)
was initially modified to

e 31 [VdVAR + ¥, (VAR + ¥; (VA]IQ 6)

where Ve= [ &+ &1+ & (7a)
Vo= I+ Iny | + [0 (Tb)

Vo=l + 150+ 18] (7c)

and £, n, and { are the curvilinear computational coordinates. The dissipation remains in a
nonconservative form but is weighted by an approximation to the eigenvalues of the
Jacobians of the flux terms (Rets. 44 and 45). The approximation has the advantage of
avoiding the evaluation of square roots. A similiar approximation to the implicit smoothing
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team of Ref. 43 preserves the block tridiagonal siructure of the difference equations. The
3-D solutions presented here were obtained with that form of the smoothing.

However, additional experimentation with the smoothing terms showed that improved
convergence rates can be obtained with the combined form

R, Q + HrQ + 2 (% Q ®)
where, e.g.,

A -
€ [—;—] 8% JQ) if e > e

'f=

st[)‘E] ife <
£—J_ |1 3 GS“E (9)
=0+ [VDUEKI+ &1+ &D (10a)
MN=Q+EVD(Un |+ [ny]+ D (10b)
M=+ IVDE |+ 8]+ 18] (10¢)
and where
e ‘ lo5+1 - 20 + @ -1 le
Mg = =
<e> lej+1+ 20+ @1 lke (11a)
%e lok w1 - 2@k + ek -4 lje
By = =4
<e> ok« 1+ 20k + ek - 1 ljr (11b)
3%9 4 lers 1 — 2er+ @~ ijk
“; = —3
<e> lerw 1+ 20+ or-1 ljk (l1c)
The corresponding implicit term has the form
, A A -
a? N — e\ J
t [e( 7+ e ] NJaq (12)
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where q is the intermediate correction vector for the ¢ direction, and where ¢, ¢,, and ¢; are
user-supplied constants. Typically, ¢ = 0.05, ¢, = 1.0, and ¢ = 0.15.

The second modification to Ref. 43 is the addition of local time stepping. At each point
the time increment, At, was replaced by a local time step, h, in the form

h = At;/(1 + V3) (13)

where At} is a limiting value at At; generally, Aty;,, < 5. This form, suggested by Pulliam
(Ref. 46), greatly speeds the convergence of single-mesh solutions. We employed it on the
assumption that it would also enhance the convergence rate of the embedded grid as well.
Holst et al. (Ref. 11) used Eq. (13) for the local time step. Flores (Ref. 47) presented
computational results that show excellent convergence rates can be obtained. He also
indicated that the diagonal form of the Beam and Warming algorithm implemented by
Pulliam and Chaussee (Ref. 48) can achieve improved convergence with a fourth-order
implicit smoothing term. A fourth-order, implicit term destroys the tridiagonal nature of the
algorithm and produces a pentadiagu... form. This is not a severe penalty for the scalar
inversions used in the diagonal algorithm. The tridiagona. .orm was retained here because
the method will also be applied to time dependent problems (e.g., Refs. 21 and 22), and the
diagonal form (Ref. 48) is not conservative in time.

An alternate form for the local time step was investigated. The new form uses a more
exact approximation of the local Courant number; it is

h = _C_FL (14
A

where CFL is the local Courant number which is a user-supplied input for each mesh, and
A=A+ N+ N)/3 (15)

where A, A,, and A; have bcen defined previously. Equation (13) was found to provide the
most consistent acceleration for arbitrary combinations of grids. For the cases tested, it was
found thai CFL < 2.0.

5.0 APPLICATION AND VERIFICATION

The motivation for development of the chimera scheme is the cimplification of grid
generation for computational problems involving complex geometry. In particular, the
requirement for routine computation of the effects of the wind tunnel environment on
aerodynamic models at the AEDC (Ref. 49) has emphasized the importance of a simple
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method for 3-D grid generation. In addition, there is a requirement for computations of
time-dependent problems involving aerodynamic configurations in relative motion as
exemplified in the space siwuttle booster separation and store separation from fighter
aircraft. Because of the complexity inherent in the grid-embedding process, particularly with
the associated data structures, we decided to first test the general concepts in two
dimensions. The lessons learned from this initial development step proved to be invaluable
to the extension of the procedure to three dimensions. Therefore, the following first
summarizes the 2-D results and notes the lessons which were found to be significant for the
development of the 3-D procedure. Ther, the 3-D resuiis ar2 piesented.

5.1 2.D APPLICATIONS

The chimera scheme was initially demonstrated in two dimensions using a linear,
incompressible flow model (Ref. 14). The method was extended to sokition of the Euler
equations about three, more complex geometric - (Ref. 15). The first was a circular cylinder
which served as a check of the method since an a..alvtic solution exists for the incompressible
case. The second was a supercritical airfoil with a shock wave crossing grid boundaries. This
example was used to explore possible difficulties with a shock/grid-boundary interaction.
The third was a flapped supercritical airfoil which served to illustrate the method with a
complex geometry.

5.1.1 Circular Cylinder

The flow about a circular cylinder in crossflow was computed for two Mach numbers. A
two-level grid hierarchy was used (Fig. 10); the first level consisted of a 51 by 51 stretched
Cartesian grid; and the second level was an 85 by 30 polar grid that contained the cylinder.
The first calculation of cylinder surface pressure for M_ = 0.25 was found to agree very
well with a potential solution with a Prandtl-Glauert compressibility correction and with an
Euler solution on a 90 by 70 polar mesh as shown i Ref. 15. A second, supercritical,
calculation was made for M, = 0.50. The vortex phenomena described by Salas (Ref. 50)
were observed as expected. The resulting solution was found to produce an asymmetric
shedding of vortices. The shed vortices passed freely downstream through the polar grid
boundary. Only the dispersion caused by the change in mesh resolution was noted.

5.1.2 Airfoil
The second geom etry was the Dornier SKF1.1 supercritical airfoil (Ref. 51) with a

modified, sharp trailing edge geometry. Two Euler equations solutions were obtained for a
Mach number of 0.76 and an angle of attack of 2.5 deg. Two grids were used. The first, a
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105- by 70-point 0-mesh, provided a reference solution. The second consisted of a two-level
embedded grid; the first level, a 105- by 28-point 0-mesh, the second, a 105- by 46-point
0-mesh (Fig. 9). All grids had a 5-point ovarlap at the trailing edge cut so that the effective
number of points defining the airfoil was reduced to 100. The elliptic grid generator GRAPE
(Ref. 52) was used to construct all grids. The reference and chimera grids had the same point
distribution on the airfoil and along the far-ficld boundary.

Both solutions were obtained with a global Courant number of 10 as defined by the
smallest cell volume. Thus, the time steps between the component grids in the chimera
scheme were different by a factor of 50. An anciilary result of the chimera solution was an
improvement in convergence rate over the single-mesh solution by a factor of 3. The
mismatch in the solution-pressure coefficients was discussed in Section 3.3. The major point
to be noted is that the shock location, and hence the surface pressure distribution, is affected
by the shock/grid-boundary interaction.

5.1.3 Maneuver Flap

Figure 11 illustrates the maneuver flap geometry that was created from the basic SKF1.1
geometry (Ref. 51). Some liberties were taken with the geometry for purposes of mesh
generation. Th= abrupt change in curvature at the flap location on the lower surface of the
airfoil was reduced by arbitrarily rounding the corner; the finite thickness of the trailing
edge of the airfoil at the flap location was eliminated in favor of a sharp trailing edge; and
the flap retained the sharp trailing edge discussed in Section 5.1.2.

A three-level grid hierarchy was employed. The first-level grid, G,,, consisted of a 105-
by 28-point 0-mesh; the second-level mesh, G;;, was a 105- by 46-point 0-mesh which
contained the airfoil; and the third-level grid, Gs;, consisted of a 55- by 16-point 0-mesh
which contained the flap. Each grid had a 5-point overlap at the cut tc avoid the use of an
implicit periodic boundary condition. Grids G,; and G, are shown in Fig. 12 without Gy,;
Gs, is shown embedded ir G;; in Fig. 13. The grids were combinud so that the flap chord line
formed a 10-deg angle, 8, with the chozd line of the airfoil. The flap gap indicated in Fig. 13
is approximatly 1.5 times larger than the experimental configuration. The larger gap greatly
simplified construction of the flap mesh G;; because points of G3, were constrained to lie
completely within the ccmputational domain (i.e. outside the airfoil).

Two solutions were obiained for supercritical conditions, M | = 0.6, « = 3 deg, 8 = 10

ceg,and M = 0.7, « = 3 deg, 8 = 10 deg. The angle of aitack, «, is measured relative tc the
airfoil chord. Figures 14 and 15 present a comparison of the computations with experimental
data (Ref. 51). Agreement is better for the M __ = 0.6 condition although the pressure peaks
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are overpredicted on poth the airfoil and the flap. The overprediction of the suction peak
causes a stronger shock which induces a downstream re-expansion. The effects of the
modified lower surface geometry at about 70-percent chord are also visible. The M_ = 0.7
solution also overpredicts the expansior on the suction surface resulting in a stronger shock
which is too far a1t. The shock locat.on at the trailing edge of the airfoil produces a higher
pressure over the flap and reduces the predicted flap suction peak. The inajor cause of the
disagreement with experiment is the lack of viscous effects in the computations which are
known to be significant for supercritical airfoils. Nevertheless, the solutions demonstrate the
ability of the method to simplify grid generation for complex geometries.

The Mach number contours for the two solutions are presented in Figs. 16 ar:1 17. The
M_ = 9.6 condition (Fig. 16) Mach number contours pass smoothly through the grid
boundaries. The shock is weak and does not cross the grid boundary. The M_ = 0.7 Mach
number contours (Fig. 17) show significant distortion of the shock at the grid boundaries.
The resultant shock distortion at the grid interfaces is stronger for M _ = 0.7 solution than
for the M_ = 0.6 solutioz. {See Section 3.3).

5.1.4 Conclusions Drawn from 2-D Work

The most important conclusion drawn from the 2-D work just described is that the
chimera scheme is a viable technique for simplification of grid generation. The procedures
for combining grids, locating overlap boundaries, constructing holes, identifying
interpolation points, and manipulating complex data structures were demonstrated and
found to be workable.

Several problem areas were also identified. The restriction which limited hole formation
to emvedded grids did not provide sufficient flexibility. The algorithm for constructing holes
allowed the embedded grid G, ; to induce a hole in mesh Gy ; in which it was embedded;
however, G ; could not cause a similar hole to be formed in Gy, ;. This problem became
evident with the construction of the flap mesh described in Section 5.1.,. The outer
boundary of the flap mesh had to be distorted so that it would not intersect the airfoil. As
a result, a compromise was reached in which the gap between the airfoil and flap was increased
beyond that of the experiment so that a flap mesh with a reasonable outer boundary could
be constructed. This feature became prohibitive for the moving mesh computations described
ir. Ref. 21. For the computations of Ref. 21 this restriction on hole formation was removed.

As has been noted in Section 3.3, the shock/grid-boundary interaction was found to be
much more troublesome than originally expected. The problem erew as the shock strength
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increased. It was speculated that the nonconservative interpolation could be the cause of the
difficvlties. Although much effort has been devoted to verifying this hypothesis, no
definitive answer has been obtained. Some significant findings have come to light; the use of
nonreflecting boundary conditions reduces the interaction (Ref. 33); the type of
interpolation scheme and extent of the overlap region are important (Refs. 18, 32, 33. 34,
and 35); and the relative difference in spatial resolution may a!so be very important (e.g.,
Refs. 18 and 35).

The convergence rates of the solutions given in Section< 5.1.2 and 5.1.3 were slew. While

the convergence rates were not of primary concern, it became obviou: that s¢ mg must
be cione to make 3-D computations feasible, In Section 5.1.1, improvements ° .ergence
rates were observed on the chimera grids. This result suggested that the differ e steps

on each grid were important for further accelerations. Therefore, the 3-D extension usad
local time stepping everywhere.

5.2 3-D APPLICATIONS

The 3-D capability of the chimera grid embedding is dcmonstrated by three example
configurations. The first example is a generic three-body configuration consisting of three
ellipsoids in a triangular arrangement. The second two are closely related wing/body and a
wing/body/tail combination. The embedding hierarchy used in these examples is shown in
Fig. 18. As in the 2-D case, the hierarchy requires that embedded grids, G, ,,j = 1,2, ...,
be contained completely within the envelopirg mesh, G, ;. The examples illustrate the wide
range of geometries that may be accommodated within the simple hierarchical framework.
The wing/body and wing/body/tail configurations illustrate .he manner in which a complex
geometry can be represented by adding component grids. All of the following solutions were
obtained on the AEDC Cray Model XMP 1/2 computer.

5.2.1 Three-Body Configuration

A generic, three-body configuration was considered to test the flexibility of the
embedding hierarchy. The configuration consists of three ellipsoidal bodies in a trianguiar
arrangement (Fig. 19). The grids of the two smaller bodies have major and minor axes one-
half of the larger; each ellipsoid bas a length-to-maximum-diameter ratio of 10. The two
smaller bodies are embedded in the mesh of the larger as indicated in Fig. 19. All the grids
are spherical with a 5-point overlap in the 5 coordinate. The mesh of the large ellipsoid has
26,250 points distributed 30 by 35 by 25 in the £, », and ¢ directions; the meshes of the two
smaller ellipsoids have 15,750 points distributed 30 by 35 by 15; and the composite mesh has
57,750 points. All grids ‘vere constructed using a hyperbolic grid generator (Refs. 53 and 54).
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5.2.2 Computation of Three-Body Configuration

A computation wa< made for M = 0.8 and @ = —2.0 deg using the complete mesh
with no assumptions of symmetry. Thus, any asymmetries observed in the solution would be
a result of an artificial asymmetry built ir..o the calculation procedure. ‘urface contours of
Mach numbers are shown in Fig. 20. The contours indicate that the fiow between the bodies
is symmetrical. Therefore, it was concluded that the codes were functioning properly.

5.2.3 Wing/Body

The win;/50dy configuration was designed to provide a simple configuration which
could be used to assess wind tunnel wall interference (Ref. 55). It consists of a blunted ogive-
cylinder { ...elage and a midmounted wing (Fig. 21). The wing has a constant chord planform
which is swept back at 30 deg with no twist or taper. Cross sections of the wing paraliel to the
plane of symmetry are NACA-0012 airfoils. The wing/body dimensions in units of fuselage
cylinder radii are showa in Fig. 21. The figure includes the dimensions of the tail which has a
consiant chord planform swept back at 30 deg without twist or taper. The equations
desciibing the fuselage geometry are

ﬂ \V©0.427 - x)x 0<x =24

y = 0.162 — 0.286x — 0.024x2 242 < x s 4.11
2 1.0 4.11 <x (16)

The dimensionless model coordinates x and y are indicated in Fig. 21. The model has been
tested in several wind tunne’ ~ver a wide range of Mach and Reynolds numbers; however,
the experimental data are as yet unpublished. An assessment of their accuracy is underway.

5.2.4 Grids

The 3-D grid-emuedding process is illustrated with the wing/body cemiguration (See
Fig. 18). An outer mesh, Fig. 22, encloses the model. It is a warped, hemispherical shell
whose polar axis is coincident with the fuselage centerline. The mesh was constructed by
using the GRAPE code (R=f. 52) to generate a mesh in a longitudinal plane. The plane was
then rotated about the polar axis. The 1" =sh exteads from 9 to 51 radii fror1 the fuselage and
contains 19,740 points whic"1 are distributed 47 by 21 by 20 in thz £, », and { directions (Sce
Fig. 22). The fuselage mesh (Fig. 23) is also a warped hemispherical shell whose inner
boundary is the fuselage surface. The grid contains 29,375 points distribu:< 1 47 by 25 by 25
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and extends to 11.£ radii. Thus, the outer boundary of the fuseiage mesh overlaps the inner
boundary of the outer mesh by 2.5 radii (about 4- to 5-point overlap). The wing grid (Fig.
24) is a warped cylindrical mesh whose axis is directed along the wing span. The end surface
containing the wing root is coincident with the fuselage surface. The grid was constructed by
using the GRAPE code (Ref. £2) to generate (-mesh grids at setacted spanwise planes. The
planar grids were then sheared onto cylindrical surfaces whose radius was equal to the
spanwise location. The mesh contains 16,698 points distributed 66 by 23 by 11. The ¢
coordinate (Fig. 24) contains a 5-point overlap at the trailing edge cut to eliminate the
requirement for an implicit periodic solution; the » coordinate has 15 spanwise surfaces
defining the wing. The composite mesh has a total of 65,813 points.

Because the fuselage mesh has points which lie within the wing, =sines in the
neighborhood of the wing are removed from the fuselage grid. Figure 25 displays the
resulting hole bounda. y. Values of the dependent variables at poiuts on the hole surfzce are
obtained from the wing mesh by trilinear interpoiation (See Section 3.3 and Appendix B).

5.2.5 Wing/Body Computations

Three calcuiations of the flow about the wing/body were made, (1) a subcritical,
compressible flow at M = 0.6 and o = 0 deg. (2) a slightly supercritical flow atM _ = 0.75
and o = 4 deg, and (3) a highly supercriucal flow ai M_ = 0.9 and a = 2 deg. In the
comparisons of computed and experimental data that follow, the pressure coefficient, C,,, is
plotted as a function of the local dimensionless chord, X/C, where X is aligned in planes
parallel :¢ the plane of symmetry. Experimental data are available at three spanwise
locaticns. In terms of the fraction of the semispan, Y/(b/2), the locations are 0.4, 0.6, and
0.9. Data are also available on the fuselage upper surface in the symmetry plane and are
presented as a funtion of the dimensionless fuselage length, X/D, where D = 10 in. This
scale was chosen to faciitate plotting. Note that the computational model continued the
cylindrical portion of the fuselage to X/D = 1.4, whereas the experimental model ended at
X/D = 1.2. No effort was made to model the support structure.

The subcritical condition, M = 0.6 and o = 0 d=g, was selected as an initial test of the
3-D chimera technique. Figure 26 presents a compariscn of computed and experimental
(Ref. 55) pressure coefficients. The agreement is favorable, even near the tip. No effort was
made to model the tip; the only computational requirement was that the grid be packed
somewhat near the tip. Packing was achieved using hyperbolic tangent spacing obtained
from the method described in Ref. 56. The comparisc with the fuselage data is good except
in the region where the tail is located (X/D = 1.0j. In that region, the computation predicts
a constant value of C,, = 0, "vhereas the data show the flow to be slightly accelerated.
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The slightly supercritical condition, M_ = 0.75 and a = 4.0 deg, was investigated next.
A comparison of the computed and experimental pressure data is made in Fig. 27. Again the
comparison is encouraging. The computation overpredicts the suction pressure on the wing
upper surface, and the aisagreement increases toward the tip. Much of this disparity is
attributable to the increasing importance of viscous effects as the flow becomes
supercritical. The fuselage data coatinue to be well predicted except near the tail location
where the disagreement is larger than in the subcritical case.

The supercritical condition was computed for M_ = 0.9 and a = 2 deg. Figure 28
compares the computation with the experimental data. The agreement is acceptable. The
agrecment near the wing tip remains surprisingly good; the disagreement in the region of the
tail has become much more significant. The fuselage data show the presence of a shock wave
slightly downstream of the wing trailing edge. The computed shock surface is shcwn in red
in Fig. 2y. Th¢ shock extends to the symmetry piane from a complex shock structure at the
wing/fuselage junction. The ragged nature of the shock surface is caused by the plot
program (Ref. 57). Figure 29a shows the curved structure of the shock from the root to the
tip (See Fig. 28). Because the shock is ““painted’” last by the plot program, the lower surface
~hock also appears in Fig. 29a as the most forward patch cf ; =d near the wing tip. Figure 29b
shows the lower surface shock more clearly. The shock location on the wing/body surface
can also be seen in Fig. 30 which displays the surface grids of the fuselage and wing; the
portion of the wing grid that is coincident with the fuselage is also shown. Mach number
contours on the body su- face show the M = 1.0 (green) contour from the symmetry plane
down the fuselage to the wing root and across the winig. The figure indicates that a major
portion of the upper wing surface is supersonic (i.¢. regicn between the green contours). The
expansion over the wing is sufficiently strong to induce a supercritical flow on the fuselage.
Mach number contours in » = constant surfaces at the wing root, midspan, and tip are
presented in Fig. 31. Tnc dotted lines in the figure represent the computational mesh and the
solid lines are the Mach number contours. The shock (green, M = 1.0 contour) is smeared
because of insufficient clusterirg of grid points. The contours at the grid boundaries are as
smocth as the spatial resolution allows.

Figure 32 displays Mach number contours on the outer boundary of the wing mesh.
These contours are of inter=st as they resclt from interpolations in the fuselage grid. The
exchange of information between the grids results in a smooth set of contours. The sonic
bubole on the wing (green contour) passes through the outer boundary. The shock surface
(Fig. 29b) continues into the fuselage mesh where the differences ir. spatia! resolution
beiween the grids smear the shock.
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5.2.6 Wing/Body/Tail Configuration

The horizonta! tail was added to the wing/body and new grids were constructed using the
tecnniques described in Section 5.2.4. The outer grid has 37,000 points (74 by 25 by 20); the
fuselage mesh contains 77,700 (74 by 335 by 30); the wing mesh has 27,720 points (66 by 28 by
15) with 20 points in the g direction defining the wing surface; and the tzil contains 15,120
points (56 by 18 by 15) with 10 points in the » direction defining the tail surface. Thus, the
composite grid consists of four component grids an- has 157,540 points. The new grids were
used to test the behavior of the chimera scheme with large component grids.

Because the fuselage mesh has points which lie within the wing and tail, two holes are
introduced into the fuselage grid in the neighborhood of the wing and tail. Figure 33 displays
the resuiting hole boundaries. Values of the dependent variables on the hole surfaces must
be interpolated from either the wing or il grids, as appropnate (See Section 3.3 and
Appendix B).

5.2.7 Wing/Body/Tail Computaticas

The M_ and a = 2.0 deg condition was rerun for the complete configuration. A
comparison of experimental and computed pressure coefficient, C,. as a function of the
dimensionless chord X/C is presented in Fig. 34 in the same marner as Section 5.2.5. Data
are available for only one semispan location on the tail, Y/(b,/2) = 9.60. Figure 34 shows
the computed resuits to be in excellent agreement with the experimental data. The addition
of the tail had very little effect on the ‘ving pressure distributions. The agreement with the
fuselage data is significantly improved. However, the data show a slightly more extensive
expansion on the fuselage than is computed. The tail data and the .omputation indicate that
ihe 2-deg angle of attack is negated by the downwash from the wing. The data indicate the
presence of a shock which is not observed in the calculation. Comparison of the solution for
th2 wing/body configuration presented in Fig. 28 with that in Fig. 34 shows some
discrepancies which are attributed 1o differences in spatial resolution and convergence
between the solutions. The large composite grid of the wing/body/tail (157,540 points) was
not converged to the same degree as the wing/body gnid {65,813 votints), a three order-of-
magnitude reducticn of the residual comoared to four.

The fuselage data (Fig. 34) indicate the presence of « shock wave (See Szction 5.2.5). The
computed shock wase structure is showa in red in rig. 35. A shock wave extends from the
fuselage symmetry plane arovnd the fuselage to the wing root, across the upper surface of
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the wing to the wing tip, and arcund the tip to the lower surface as in Fig. 29. The shock in
Fig. 35 is sharper and less ragged because of the increased spatiai resolution. A small shock
can also be seen on the tail. This shock is weaker and does not extend to the tail root nor
does it cross the tail grid outer boundary. This is consistent with the effective reduction of
the angle of aitack at the tail noted in Fig. 34. Mach number contours on the full
configuration are shown in Fig. 36, which also displays the surface grids (compare with Fig.
30). The Mach = 1.0 (green) contours can be tracea arcund the fuselage and across the
wing. A large portion of the wing upper surface is supercritical. In comparison, only a small
region concentrated near the tip is supercritical on the tail. Figure 37 presents Mach number
contours in y = constant surfaces at the root, midspan, and tip for both the wing and tail.
The small extent of the super<ntical flow on the tail is evident (the green, M = 1.0 contour).

Figure 38 displays Mach number contours on the outer boundaries of the wing and tail
grids which result from quantities interpolated from the fuselage mesh. The information
exchange among the grids results in smooth contours. The sonic bubble over the wing (green
contour) passes through the grid boundary, whereas the tail has no such interaction.

6.0 CONCLUDING REMARKS

A set of computer codes have been described that implement 3-D grid-embedding
teclniques as a part of a flexible solution coacept that we have called a chimera method.
The codes utilize procedures for combining grids, locating embedded boundaries ana
interpolation puin*s, and manipulating compiex data structures. The validity of the method
was successfully demonstrated on se /eral geometries for inviscid flow. Extension of the
methoa (o include viscous effects is underway.
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Figure 1. Hierarchical structure of embedded grids.
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SKF1.1

Figure 11. SKF1.1 muneuver flap configuration,

Figure 12. Maneuver flap configuration, grids Gy, and G,,.
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Hierarchy for Wing/Body/Tail Hierarchy for Three Ellipsoids

G1,1 G1,1
Outer Grid Large Ellipsoid
Fig. 22

Girid

Gy 4 Gg 1 2,2
Fuselage Grid Small Ellipsoid Small Ellipsoid
Fig. 23 Grid . Grid 4

Gs 1 Gy o
Wing Grid Tail Grid
Fig. 24

Figure 18. Grid-embedding hierarchies for 3-D applications.
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Figure 19. Three-ellipsoid-body configuration and grids.
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Figure 21. Wing/body/tail configuratior
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Figure 22. Outer grid for wing/body.

Figure 24. Wing grid.
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Figure 26. Wing/body solution, M_ = 0.6), o = 0 deg (open symbols,

upper surface; solid symbols, lower surface).
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Figure 27. Wing/body solution, M _ = 0.75, « = 4 deg (open symbols,
upper surface; solid symbols, lower surface).
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Figure 28. Wing/body solution, M = 0.90, a = 2 deg (open symbols,
upper surface; solid symbols, lower surface).
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APPENDIX A
STRUCTURE CHART FOR PEGSUS
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The structure charts (Figs. A-1, A-2, and A-3) for the PEGSUS Code clarify the
conceptual components of the program and the relationships among them. The concerswal
elements are arranged in a hierarchy with the most general components on the highest lcvels
and the most specialized on the lowest. Whenever a specific element is accomplished in a
single svbroutine, it is identified on the structure chart by SXX, where XX is the number of
an entry in Table A-: which identifies the subroutine by name. Thus, the charts also
illv~trate the calling sequence of subroutines. Note that the charts may identify the same
conceptual element in more than one place. This repetition occurs for purposes of clarity.
Similarly, namelist data inputs are indicted as NLXX and are identified in Table A-2. For
details of the functions performed in each subroutine, see Appendix D; for details of the

input data, see Appendix F.

Table A-1 Subroutine Names for PEGSUS Structure Chart

Number

S1o
si
S12
S13
S14
Sis
Si6
S17
Si8
Si9
S20

Subroutine Name

INITIA
COMPOS
OUTPUT
WCOORD
CHKPLT

HOLE

OUTER

RGRID

TRANS
CHKOUT
CHKSTN

CINDEX
WIBLNK
HDATA
INTDAT
HINTPT
PLTHOL

INITHB

FRNGE

PLTIBL

PREVIOUS PAGE
1S BLANK

o
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Table A-1 Concluded

Number Subrouti * Name
S21 HLOCAT
S22 SETPTR
S23 QUAD
S24 NEARPT
S$25 NORM AL
S26 ODATA
S§27 OLOCAT
S28 OBOUND
S29 PLTOIl

Table A-2 Namelist Names for PEGSUS Structure Chart

Number Subroutine Name
NL1 HIERCY
NL2 SEARCH
NL3 CKPLOT
NL4 GRDPRM
NLS HBOUN

NLé6 OBOUN

B4
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APPENDIX B
T ULINEAR INTERPOLATION

Trilinear interpolation can only be used on cubes. Unfortunately, the typical cell resulting
from grid generation in curvilinear coordinates is a warped hexahedron. Therzfore, each ceil
containing a point at which a function value is to be interpolated must first be transformed

to a cube (Fig. B-1). This is most easily accomplished by applying the same isoparametric
form to the coordinates of the hexahedron as is used for the interpolation. This is

=a +qt+tayntal+tasint+agkt+anl +agkng (B
where the a;, i = 1, ... 8 are coefficients depending on the values of f at the vertices of the
cube, and (£, », {) are coordinates of the interpolated point. P, relative to a vertex of the
cube. For convenience, we map to the unit cube (See Fig. B-1), so

0sé&ntsd (B-2)

The coefficients a; can easily be obtained from the values of f at the vertices of the cube.
For example, at (£, n, $) = (0, 0, 0), t, = a,, where f, is the value of f at vertex 1 (See Fig.
B-1). Repetition of this procedure leads to the system

f] = a;

fa = a; + a;
fy =a; + a + a3 + as
fs = a + a3
fc = a; + ay
fe = a, + a + ay + g

f, =a + a + a3y +a;+as +ag + a; + ag

fg = a; + a3 + a4 + a; (B-3)
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Solution for the ; in terms of the f; yields

a = f

a=-f +16
a3 = —f + f,
a=-f +f1s

35=f|-f2+f3°f4

ag fi — f, - f5 + f§
a-,=f|—f4—f5+f3

33=—f|+f2—f3+f4+f5—-f6+f|—fs (B-4)

We now identify the origin of the cube in interpolation space with the coordinates in
physical space as

0,0,0) = (X, Y, Z);,x,1

fi = £

The subscripts (j, k, 1) corresponding to the vertices become

fi = fixa

f2 = fioi
f3 = fio1kern
fa = fjxe
fs = fixie
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fo = fje1xaen

f2 = fje1ke1041

fs = fikeris (B-5)
Thus, the interpolation stencil is specified by specifying (j,k,l) which simplifes the storage
requirements.

The mapping of the warped hexahedron to a cube using the same isoparametric mapping
as for f defines the transform from (£, 9, {) to (X,Y,Z). Thus,

X = a +3z?+33;l+&4?'+ 35§;I+36§?+37;I?+as§;§'
Y=b +byf+byg+bl +bskn+bgkf+byn¢+bgknt

Z=c+ci+cn+tcal+ceskn+cgbt+cont+cgind  (B6)

where the constants, a;, b;, ¢j,j = 1, ..., 8 are determined by the corresponding values of the
coordinates at the vertices in physical space according to Eq. (B-4). Equation (B-6) is valid
for any point in the interior of the hexahedron. Thus, since the (X, Y, Z) coordinates of P
are known, we have a system of equations for the coordinates of P in interpolation space.
The above mapping must be one-to-one (i.e., the inverse mapping must exist). The
mathematical requirement is that the warped hexahedron be ‘‘convex’ (i.e. not too
warped). For our applications, this requirement should be implicitly satisfied since the
transformation to computational space maps the warped hexahedrons to cubes and is one-
to-one.

Solution for the (£, 7, {) corresponding to P is accomplished iteratively by applying
Newton’s method. Let the system be written as

X =GEnD =G0

Let

Newton's method gives

—r+ —~» - - ~ - =y

E = -[F7(X,E)] 'eF (XE) (B-7)
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for the iteration, where

- = Mj;
3 Y

|

and
(ag +asn+agt +agnl) (a3 +asé+arl +agkl) (ag+agf+ary+agly)
M= | (bg+bsn+bgf+bgns) (by+bsE+brf + bgéf) (by+ bet + brn + bg )

(c2+csn+cef +cgnl) (3 +csE+crt+cgéd) (ca+ o +crn+cgim
(B-8)

M is the Jacobian of the isoparametric transformation. Hence, M - ! must exist as long as the
mapping is one-to-one. Since M is 3 by 3, its inverse can be computed directly as

(M2 M33 — M3 M3))  — (Mj; M3z — M3 M3) (Mj2 M3 — M3 Mp)

M-t = | (M My3 — May3 My) (My; M3z — Mi3Ms))  — (M) M3 — Mj3 My) !
det M

(M2; Mjy; - M2 My))  — (M;; My; - Mj2 My)) (M) My — M2 Myy) (B-9)
where
det M = — (M;;MxMs3 + M;pMpsM;, + MisM M)
+ (M3M2aMy + MMy M3; + M1 M23,My)) (B-10)
The function F(x, E_). is
Fi=(a ~x)+aé+ayn+asf+asn+ackl +arnl +agknf
Fo=(by~y) +byE+bygp+bsl +bskn+bgff+byni+bginf

Fi=(c—2)+f+cyn+caf +Csbn+cebf +crni +cykng
(B-11)

Typically, £ = (1/2, 1/2, 1/2) and the iteration converges to an rms residual of 10-4in
about five steps. The values of (£, 5, {) are stored in arrays DXI, DYI, and DZI in PEGSUS.
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They are reordered for use in XMER3D where they are called DXINT, DYINT, and
DZINT.

Isoparametric
Mapping
(0,1,1)
| p
| *
|
z! |
|
(0,0,1) 6/(1,0,1)
5 4_ L
70,10 3/(1,1,0)
/
/
/
/
/
/
1 2 -
Physical Space /(0,0,0) (1,0,0) £
n

Interpolation Space

Figure B-1. Isopzrametric mapping used for trilinear interpolation.
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APPENDIX C
DATA STRUCTURES

PEGSUS
The Embedding Hierarchy

The embedding hicrarchy establishes how the component grids are allowed to interact. It
also determines the form of the data structure. The experience obtained from the 2-D
chimera work (Refs. 15 and 21) shows that a less restrictive hierarchy will be required. In
particular, an embedded grid must be allowed to overlay solid boundaries in the grid in
which it is embedded. This extension means that holes may be introduced into a grid, G,
not only from the embedded mesh, G, , | ;, but also from the mesh in which it is embedded,
Gy -1 k- Additicnally, grids on the same level of the hierarchy must be allowed to interact or
become linked. These r¢quirements were kept in mind when the data structures were
desizned for the 3-D implementation. Therefore, the data structures are described {nr the
more general Lase but are illustrated €or the restricted case.

The restricted hierarchy described in Section 4.1 is illustrated in Fig. C-1. The notation
Gy, is used to indicate the ith grid on level I. We now introduce additional nomenclature that
will be ielated to the data structure. The mesh G, ir a precursor to its descendent grid
Gy +1,), which is embedded within it. For exanple, iz Fig. C-1 mesh G,; had G;, and Gj; as
descendants and Gj;; as its precursor. 72 account for these relationships, the arrays
PRECUR and DECEND are introduced. T¢. allow for a general structure of relationships
among the grids, '’ are <iored in an arbitrary order in memory and arr: assigned a mesh
number. Only ti.e voot gnd, G;,, has a predetermined number and it is one (1). The
embedding hierarchy of Fig. C-1 with assigned mesh numbers is shown in Fig. C-2. The
introd-ction of the pointers also siimplifies the construction of lists and pointers.

Hierarchy Pointers

Because each grid has a unique number, M, assigned to it, any mesh is identificd by a
single number. For example, from Fig. C-2,

M=13=0Gp

A grid’s relationship to other grids in the hierarchy can be determined by specifying grids
embedded within it (descendants) and the grid in which it is embedded (precursor). We
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define arrays to store precursor and descendent mesh numbers. These are PRECUR(M)
which contains the mesh number of grid M, NDCEND(M) which stores the number of
descendants of M, and DECEND{M,N) which holds the mesh number of the N' descendant
of M. The PRECUR array poi~ts to grids ~hich are in lower leveis of the hierarchy and
DECEND points to grids which are in higher levels of the hiera-chy.

The cartesian coordinates are stored in single arrays X(I}. Y(1), and Z(I) to minimize
storage. A pointer, IXPNTKM), is used to store the value of the index 1 corresponding tc
the first element of mesh M. The maximum values of the indices (j,k,l) are stored in .he
arrays MIMAX(M), MKMAX(M), ai.d MLMAX(M). If the address cf the starting elements
of the arrays X, Y, and Z are passed to subroutines via argume-u lists, the cocrdinates of any
point in M are

X(J,¥,L) I ¢ [1, MIMAX(M)]
Y(J,K,L) K e [1, MKMAX(M)]
ZOKi) \ Le[1, MLMAX(M)]
The arrays X(I), Y(I), and Z(I) are ordered lists.
Thus, the pointer IXPNTR becomes
M = 2, IXPNTR(l) = 1
2, IXPNTR(2) = MIMAX(1)*MKMAX(1)*MLMAX(1) + IXPNTR(1)
3, IXPNTR(3) = MIMAX(2)*MKMAX(2)*MLMAX(2) + IXPNTR(2)
Extension of the Hierarchy and Data Structure

Even limited experience with the chimera scheme has shown the method to have a
significant potential to simplify grid generation. This potential can be increased by an
extension of the hierarchy to allow grids on the same level to intersec.. Relaxation of the
hole generatioa restriction to allow an embedded grid, G, ; to have a hole introduced b -

solid boundary in the precursor grid, G, ; requires only a slight change in the data struct ..
and composite grid construction algorithm.
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Tthe increase in efficiency gained by allowing grids on the same level to intersect may be
illustrated by the following example. The simple hierarchy shown in Fig. C-3 leads to a
composite mesh such as that illustrated. The restriction to disjoint grids on tne same level
requii.s the wing grid, Gj,, io be embedded in the fuselage grid. The total number of points
could be reduced by relaxing this restriction (Fig. C-4). The complications that can be
expected from the eateasion of the hierarchy are illuscrated in Fig. C-4. They entail a hole
crossing bath gnd boundziies and levels of the hierarchy.

The modificatior. to the data structure to accommodate overlapping grids ic the addition
of a pointer (0 grids on the same level of the hierarchy which intersect a given grnid. We
introduce the pointer LINK(M,N) to stor= mesh numbers of the Nt grids intersecting or
linking mesih M. The total numb_r of such grids for mesh M is stored in the array
NLINA(M). A similar structure is introduced to account for the hoies—th2s pointer
HO!.ES(M.N) -3 store mesh numbers of the Nt grid which introduces a hole into M, and
the array N7 ES(M) 10 record the total number of grids which cause holes in M. The
modificati2. ~rovide the capability to allow very general interactions among the grids.

Once the data structure < modified, the ilzor..hm for constructing the composite mesh
must be altered. The requirement is that additional : carches be made of more grids to locate
appro_. ate interpolational stencils. The above modifications are underway.

Boundary and Interpolatton Da*a

The form of the data structure used for the boundary interpolation datz depends upon
how the data are collected. The procedure obtains hole data for a!! the grids and then
generates outer-bouidary data for all th= grids. The data structure must associate the
interpelated boundary poaint in a mesh M with the corresperding stencil in mesh M1, It must
also associate the intzrpolation stenci in M with the correspcinding bounaary point in mesh
M2.

The irdices of the interpolated boundary puinis and it.c correspending interpolation
stencii reference point (See Appendix B) are stored in separate lists for each mesh. For
simplicity, dout's-dimensioned arravs are vsed, JBPT(M., KBPT(M.1). and LBPT(M.D)
for boundary points and JI(M,I), KI(M,1), and Li(M.]) for the stencil reference point.
The arrays are filled as follows: Mesh M1 is searched tor an interpclation stencil for a
boundar, ;. ntin grid M When the stencil is located, the stenci! reference pollt indices are
stored in the usts JI(MILD), KI{M1.» and L 7ML D) and the interpolation coefticients (See
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Appendix B) are stored in the lists DXI(ML,I), DY!ML,I), and DZI(MI1,I). For
convenience, the boundary point indices of the point in M are stored in the lists
JBPT(M1,D, XBPT(ML,I), and LBPT(MI,I). The lists organize the data by the mesh
number of the grid which contains the interpolation stencil. The total number of boundary
points interpolated from mesh M is IBPTS(M). Thus, the lists JI, KI, LI DXI, DYI, and
DZI for mesih M contair: information obtained from mesh M, whereas the data in the lists
JBi , KBI'T, and LBPT for M are indices of points which kziong to otier grids.

The collection ai.d data storage procedure automatically associate an interpolatiosn
stencil to the proper boundary point by the mesh number of the stencil. However, additic:nal
pointers are needed to sort the data according to the mesh number of the bouzdary point.
Because PEGSUS first collects the data for all the hole bourdaries and then all the outer
boundaries, the lists for each mesh are naturally divided into sublists which correspond to
separate boundaries of other grids (Fig. C-5). An additional set of pointers identifies the
sublists; IPNTR(M,N) poirts tc the first member, and NPN1TR(M,N) points to the last
member of the Nt boundary interpolated from mesh M. The total number of sublists or
subsets for M is NSETS(M). Figure C-5 illusirates how the pointers are relaied to the
irterpolation data lists.

The bookkeeping is complete¢ by providing a means of isolating a particular hole
boundary 9+ outer boundary. Consider the syster . of embedded grids given in Figs. C-1 and
C-2. The grids are embeddecd according to the hierarchy allowed by PEGSYUS. Each
embedded grid is dis;oint with respect to other grids on the same level of the hierarchy and
contained completely within a single mesh on the next lower level of the hierarchy. Suppose
we wish to examine the hole boundary in G (M = 3) caused by G3; (M = $), according to
the acopted s.orage convention, the indices of the hole Goundary are contained in a subset
or sublists of the points interpolated from mesh M = § [That is. G;z is the mesh from which
values will be interpolated for peints in G (M = 3) on the hole boundary caused by Uj)).
Thus, all that is required is to locate the particular subset, say N, and the data will be
cor:tined in the lis's beiween

IPNTR(5.N) = I < NPNTR(SN)
We introduce a new pointer MHB(M,M1) to serve as a cross index for the subsets of the
mesh interpolation lists. Suppose we wish to iocate the subset number, ISET, of the hole-
boundary data of points in M caused by the embedded grid, M1, then

ISET = MUB(M, MI)

If M1 does nat introduce a hoie into "M, then ISET = 0. For the restricied hierarchy of Fig.
C-6, ornly the descendants ot mesh M need to be searched. Thus,
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M1 = DECEND(M,N), N = 1.._,NDCEND(M)
Figure C-6 illustrates the structure of MBH for the hierarchy of Fig. C-2.
In the examp.e, the required subsat is
ISET = MHB(M,M1) = N

where M = 3, Ml = 5. The desired boundary indices are located in the lists JBPT(M1.]).
KBPT(ML.1), I RPT(MI i) hetween the indices

IPN” R(ML,N)} < I < NPNTR(M1,N)

A similar procedure is used t . locate outer-bound=.~y data for mesh M in the interpolation
lists of the precursor mesh M1. The appropriate suolist in Ml is

ISET = MOB{M M1,

where MOB is the outer-boundary cross-index pointer. Note that no alterations -.re requireJ
to MHB and MOB for the extensions described in the section of this app :ndix entitled
**Extension of the Hierarchy and Data Struc.wre.”’

XMER3D

The code XMER3D contains the flow solver or suivers. it scrves the caecutive functions
of <ontrolling input, outnut, directing the solution on cach mesh to the aporopnate 1low
sclver, and regulating the number of iierations performed on a mesh beiore proceeding to
the next. However, there are onlv two funcuons that XMER3D must perform on the
interpolation data. The first is to update interpolation boundaries of a mesh; the second is to
interpolat= data for the boundaries of embedded grids. Therefore, PEGSUS reorganizes the
interpolation data for each erid into two <ets of lists for use in XMER32D.

The first set contains the indices of the interpoianion stencil reference points. JI(I), KI(I),
and LI(I) and corresponding interpolation coefiicients, DXII), DYI(I), and DZI(1). (Note
the change in notation.) There arc IIPNTS points which require interpolaticn from mesh M.
The second set holds the list ot indices ot pot.ts in M that have values interpolated from
oth.: . JB(1), KB(1), and LB(I). Because aii the interpolated vclues are retamnzd in
memor, 1n a single List. QBC, a cross-index list. 183C(D, 1y also incuuded 10 the second s2i of
lists. There are IBPNTS points in the szc~nd set of lists tor each mesn and HTOT points in
QBC. Figure C-7 illusirates the structure of the lists for mesh M.
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TL: data management in XMER3D maintains the grid, interpolation lists, and vpdate
lists un separate external units. XMER3D reads the appropriate data into memory as
required. The management strategy minimizes the storage required for solution at the
expense of more 170 overhead. In order to reduce the complexity of the data management,
all the interpolated values in the list QBC permanently reside in memory. To minimize the
storage requirement, the interpolated values are stored contiguously (Fig. C-8). For cach
grid a pointer, IISPTR, points to the elemeat of QBC which corresponds to the first element
in the list for mesh M. Storage in the list is arranged such that once the solution is advanced
on mesh M and the required interpolations perfcrmed, the new valies are stored by grid in
QBC (i.e. one subset or sublist for each mesh). The storage sirategy requires inat a
mechanism be provided which will allow the QBC list to be sorted to loczie the proper values
10 update the interpolated boundaries of M. The required sorting information is supplied by
the list IBC. Its function is to provide the index, I, in QBC which corresponds to a given
boundary point (JB,KB,LB) in M. Thus, the data required to update (JR,KB,LB) in M are
stored in QBC(I) (See Fig. C-8).
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Hierarchy

Level 1:

Figure C-1. Embedding hicrarchy and graph.
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Figure C-2. Embedding hierarchy and associated meth sumbers.
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Figure C-3. Example of composite mesh for restricted embedding hierarchy.
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Figure C-4. Example of a composite mesh for embedding hierarchy
allowing iutersecting grids.
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Pointers List Internoliation Data
Subset Into Lists Index, 1 Lists for Mesh, M
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1 from Mesh,
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po - o e cam | e— e — G e E— e o, el — — — — et ——— —
IPNTR(M. .2 ) —p— .
Boundary No. 1
trom Mesh,
2 M2 (Hole)
I,
I S, __-_d____{[-___-
Bounaary No. 2
from Mesh.
3 Ml (Outer)
————-?————-JP———--Q——-——-*——-——-.
Etc

— —

MoN) —

- — - — e

I

NSETSo)

NPNTROM N ) —o

p e e —

-

-1 BPTS M)

o w— e —

Figure C-5. Pointers into inlerpolation data lists

used i

n PEGSUS.
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MHB (M M) =

Figure C-6. Matrix structure of cross-index array, MHB,
for hole boundaries.
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Interpolation List

Update List

Figure C-7. Structure of interpolation data lists used in XMER3D.
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Storage
Location
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QBC

3BC Interpolation
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Figure C-8. Summary of data structuse used in XMER3D.
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Numbert

CHKOUT S10

CHKPLT SS

CHKSTN Sit

CINDEX £12

COMPOS S2

FRNGE S19

HDATA S14

HINTPT S16

APPENDIX D
SUBROUTINE DESCRIPTIONS

Checks the interpolation stencils to locate those which do not contain the
interpolated point. Trilinear interpolation requires the interpolation
coefficients to take values in the interval [0,1]). If any value is outside the
interval by more than ¢ (= 0.0001) the point is flagged.

Plots specified surfaces of the input grids as a check. See namelist
CKPLOT.

Checks points in the mcrpolation stencil to determine if they contain
interpolated data. For each point in the lists JI(M,I), KI(M,I), LI(M,]),
and associated stencils of mesh M, sublists of JBPT(M1,1), KBPT(M1,I),
and LBPT(M1,I) cor-esponding to points in M are searched to locate
common indices.

Constructs the cross-index array IBC and the update list of boundary
points, then computes the total number of points IBPNTS 2nd LIPNTS in
the update and interpolation lists for each mesh.

Supervises the construction of the composite grid {rom the component
grids. The hierarchy specifications and component grids ar¢ input; the
component grids transformed: ¢ >mposite grid points set; and the
composite grid written tc external storage for input to XMER3D.

Constructs the fringe or boundary about the hole introduced by grid M1
(descendant in present hierarchy). The fringe points are identified by
setting IBLANK = MI.

Reads the namelist HBOUN which contains the specifications for the
initial hole boundary for all grids. The as.umption is that each descendent
mesh causes only one hole.

Locates interpolation stencils in descendent mesh M1 for hole-boundary
points in M. Trilinear interpolation is assumed.

t+ NOTE' Numbers correspond to subrouti'» numbers in Table A-1 in Appendix A
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HLOCAT S21

HOLE Sé6

INITHB S)8

INITIA S1

INTDAT SI15

MAXMIN

NEARPT S24

NEWTON

NORMAL 825§

NUMHOL

AEDC-TR-85-64

Subroutine Descripticns

Identifies the points of mes: M interior to the initial ho.e boundary
introduced from descendent mesh M. interior points are located by
forming dot product of R,, and N wherc Rp is the position vector from the
nearest point on i"c boundary to a field po.nt of mesh 4, and N is the
corresponding surfac. outward unit nrormal. If the dot product is positive,
the point is outside the hole. The search is restricted to points within a
sphere whose origui is the mean value of the coordinates of the initial
surface and r uaiis equal to the maxim.mn from the sphere origin to the
farthest surface point (See Section 3.2).

Supervises the construction of holes and computation of the associated
interpolation data for all grids. The construction procedure sets IBLANK
= 0 at imterior points and boundary points.

Constructs the initial hole boundary. The boundary coordinates are stored
in 2-D arrays.

The initial values ol the code parameters are set (also BLOCKNDATA), and
the title, hierarchy data in namelist HIERCY, and search limits in namelist

SEARCH are read. Summaries of _he input values are wriiten to unit 6.

Computes the interpolation coefticients for trilinear interpolation using
Newton’s metnod.

Determin.» the maximum and minimum values of component grid
coordinates for plotting purposes.

Locates the nearest point in mesh M to a specified point.
Solves the trili. car interpolaiion equations for the coordinates of the
interpolated point in interpolation space (i.e. £, 7, ¢). For deaib, see

Appe.dix B.

Computes the oumdrd unit normal 10 a specitizd surface by um\truunm.
the surface tzngents T!and T2 and forming the cross-pro gl . T2

Counis the total number ot points within holes (including ringe points) m
the composite grid.

107



AEDC-TR-85-64

Number

OBOUN 528

ODATA S26

OLOCAT 827

OUTER §7

OUTPUT S3

PLANE

PLTHI

PLTOI S2¢

PLTHOL S17

Pi.TIBL S20

PLTINT

Subroutine Descriptions
Loads the suter-grid boundary into 2-D arrays.

Reads the namelist OBOUND which contains the specifications for all the
component grid outer boundaries.

Locates interpolation points for the outer boundary of mesh M by
searching the pre.ursor grid M1 for the nearest point corre. - ling to
each bouvandary point.

Supervises the computation of interpolation uata for the outer boundaries
of embedded grids. The outer-bouudary specifications are input; the
interpolation cata computed; and points are set.

Supervises the final check on and output of interpolation data. It also
writes all the final summaries for the composite grid and mak.. estimates

of siorage parameters used in XMER3D.

Plots a constant surface of J, K, or L depending upon the value of the flag
ICASE, which 1s set in the calling routine.

Supervises the plotting of hole boundary and corresponding interpolation
stencil reference points.

Supervises the plotting of outer-boundary and corresponding
interpo! .con stencil reference poinis.

Plots the initial hole boundary in ~1esh M caused by the descendent mesh
Ml

Plots the final hole boundary in m~sa M caused by all its descendaents. The
plct is made in computational space.

Plots ihe hole boundary and interpolation peint by connecting them with
a line segment.
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QUAD 8§23

RGRID S8

SETPTR S22

TRANS S9

WCOORD $4

WIBLNK S13
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Subroutine Descriptions

Designates the :iterpolation reference point by identifying the point
(JMIN, KMIN, L}MIN) of the cub. containing the interpolated point. The
reference point .s selected based on a transform to the uniform
computational space. Note that INTDAT performs additional checks to
ensure that the cube specified by the reference point actually contain; iiie
interpolated point (See Appendix B).

Reads a grid from the external unit MESH + 10 and checks the consistency
of the data input from rawelist GRDPRM with similar data on the
external unit.

Sets the grid pointers MHB, MOB, IPNTR, and NPNTR; loads the lists
NSETS, IBPTS, JBPT, KBPT, LBP.. JI, KI, LI, DXINT, DYINT, and
DZINT.

Transforms an input component grid by translating, rotating, and scaling
the coordinates. The rotations are assumed to be applied in the following
order: z-axis (pitcn), v-axis (yaw), and x-axis (roll). It is verv important to
remember waat all transformations are with respect to the composite grid
origin.

Writes th* composite grid coordinates to unit 1 in the format that is
expected v the flow solver, XMER3D. The records contain the x, y, z

coordinar:s for each grid, one grid at a time.

Write, iBLANK to unit 2 in form expected by the flow solver, XMER3D.
Each record will contain the IBLANK array for a single grid.
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Variable
ALFAQ3)

BETAQ3)
GAMAQ3)

DECEND(M,N)

DXINT(M,I)
DYINT(M,I)
DZINT(M,I)

IBC(I)

IBMAX
JBMAX

IBDIM
JBDIM

IBLANK(I)

APPENDIX E
GLOSSARY OF GLOBAL VARIABLES

Descrioti

Transformation Parameters. They are rotation angles of new coordinate
axis (composite) grid relative to input axis system.

ALFA — rotation about x-axis (deg)
BETA — rotation about y-axis (deg)
GAMA — rotation about z-axis (deg)

Hierarchy parameter. It is an integer pointer which points to mesh
number of the Nt» descer.dant of mesh M.

Interpolation Variables. They are lists which contain the interpolation
coefficients for the trilinear interpolation of boundary points in mesh M
e £, 9).

XMER3D Bookkeeping. IBC is a cross-index list that points to storage
locations of interpolated values for boundary points (See Appendix D).
It connects lists of boundary-point indices to the corresponding
interpolated value.

Boundary Surface Variables. These variables specify the maximum
number of points in each surface coordinate direction (See VNX, VNY,
VNZ, JB, etc., and JBO, etc.).

Code Parameters. These parameters specify the maximum allowable
values for IBMAX and JBMAX. They are array dimensions.

XMER3D Bookkeeping. This is an array of flags for each grid point in
each mesh. It takes the value of 1 for points exterior to the hole and 0
for points within or on the boundary of a hole. Note that points interior
to a hole are excluded from the solution on that mesh. Hole points that
are boundary points have values of the flow variables interpolated from
other grids.
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Variable

IBPNTS

IBPTS(M)

ICKPLT

IDIM

IFLAG(I)

IFORMT

IHBTYP(M)
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Description

XMER3D Bookkeeping. This variable specifies the total number of
boundary points in mesh that must be updated from values interpolated
in other grids.

Interpolation Variable. IBPTS contains the total number of boundary
points interpolated on mesh M (See JBPTS, DXINT, ]I, etc.).

Plot Parameter. (Logical) If this plot flag value is TRUE, check plots of
grid coordinate surfaces are to be made; if va e is FALSE, no check
plots are made (Also see JPLOTS, etc.. and NPLOTS).

Code Parameter. This parameter specifies the maximum allowable
number of interpolation points for each mesh. It is used as an array

dimension.

Work Array. It is used with outer boundary surface index lists JBO,
KBO, LBO to sort boundary interpolation points for linked grids.

Input Format Parameter. This parameter allows for multiple forms of
the input format of component grids. Code currently has only one
ailowable format, hence IFORMT = 1 (See subroutine RGRID).

Hole Boundary Specification Parameter. This parameter specifies the
topology and type of initial hole boundary to be specified. Permitted

values are

110—warped spherical surface given by L = constant and J along
lines of longitude;

120—warped hemisphere with base at J = JE;

210—warped cylindrical surface with L = constant surface and K
along the cylinder axis. End planes included;

220—warped cylindrical surface with open end at K = KS;

[Also see JHI(M), etc., and subroutine INITHB.]
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Variable

IIEPTR

IISPTR

IIPNTS

IITOT

I08TYP(M)

IPNTR(M,N)

ITO

ITOTAL

Description

XMER3D Bookkeeping. These are pointers into lists of interpolated
boundary data. They correspond to last and first element of list QBC
for data interpolatec' in mesh M.

XMER3D Bookkeeping. This variable specifies the number of
boundary points interpolated from solution on mesh M.

XMER3D Bookkeeping. It specifies the total number of points
interpolated in the composite mesh.

Outer-Boundary Specification Parameter. This parameter specifies the

topology and type of outer-boundary surface for mesh M. Permissible

values are

110—warped spherical surface given by L = constant and J along lines
of longitude;

120—warped hemisphere with base at J = J02;
130—warped hemispherical surface with open base at J = J02;

2]10—warped cylindrical surface with L = constant surface and K
along the cylinder axis; end planes included;

220—warped cylindrical surrace with open end at K = KOI;

[Also see JO1(M), etc., and subroutine OBOUND.]

Interpolation Variables. These are pointers into lists of interpolation
stencil reference points, interpolation coefficients, and corresponding
boundary-point lists. They specify the first and last index of points
which belong to the Nt subset of the list. The points are members of
grid M (See JBPT, eic.).

Work Variable. It is the number of points in the JNO, KNO, LNO,
IBO, KBO, LBO arrays.

Work Variable. It is the number of points in the JN, KN, LN arrays.
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Variable

ITRANS

IXPNTR(M)

JB(I)
KB(I)
LB(I)

JBO(I)
kBO(I)
LBO(I)

JBPT(M,I)
KSPT(M,I)
LBPT(M,I)

JDIM
KDIM
LDIM

JHI(M)
KHI(M)
LHI(M)
JH2(M)
KH2(M)
LH2(M)

JI(M, 1)
KI(M,I)
LIM,I)
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Descripticn

Transformation Parameter. (Logical) This parameter specifies whether
or not a transformation of input grid coordinates is required. If the
value is TRUE, a transform is required; if it is FALSE, no transform is
needed (See ALFA, BETA, GAMA, XO, YO, Z, SCALE).

Bookeeping Parameter. This is a pointer into the grid and IBLANK
arrays. It points to the location of the first element in mesh M. Values
of the flow variables at these points will be interpolated from M (Also
see J1, K1, L1, IPNTR, NPNTR, NSETS).

Work Arrzys. They hold boundary-point indices of the current mesh.

Work Arrays. They contain boundary-point indices of outer
boundaries. They are used with IFLAG(I) and are necessary to deal
with linked grid outer boundaries.

Interpolation Variables. They are lists of boundary-point indices that
belong to boundaries of other grids which are embedded in mesh M.
They specify the first and last index of the Nth s ,set of the list. The
interpolation coefficients and corresponding boundary-poin. iists are
DXINT, DYINT, DZINT, and JI, KI, LI.

Code Parameters. They specify the maximum allowable vaiues of
JMAX, KMAX, and LMAX. They are used as array dimensions.

Hole Boundary Specification Parameters. These variables specify the
beginning and ending values of grid coordinares which specify the initial
hole boundary caused by mesh M. Specific values depend upon grid
topology (See subroutine INITHB description, IHBTYP and input
description, Appendix F).

Interpolation Variable. They are lists of interpolation stencil reference
indices. The points belong to mesh M (See JBPT, KBPT, LBPT,
IPNTR, NPNTR, and NSETS).
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Variable

JLHI(M,N)
KLH1(M,N)
LLHI(M,N)
JLH2(M,N)
KLE2(M,N)
LLH2(M,N)

IN()
KN(I)
LN(®)

JOI(M)
KO1(M)
LO1(M)
JO2(M)
KO2(M)
LO2(M)

JPLOT(M,N)
KPLOT(M,N)
LPLOT(M,N)

JRSI(M)
KRSI1(M)
LRSI(M)
JRS2(M)
KRS2(M)
LRS2(M)

LHBTYP(M,M1I)

MDIM

Description

Hole-Boundary Specification Parameters. These variables specify the
beginning and ending values of grid coordinates which specify the initial
hole boundary used by the Nt grid linked with mesh M. Values depend
upon grid topology [See JH1, etc., LHBYPM(M,N), and Appendix F.]

Work Arrays. They contain indices of the interpolation stencil reference
point in the current grid, M (Also see JB, KB, LB).

Outer-Boundary Specification Parameters. These variables specify the
beginning and ending indices to be used in defining outer-grid
boundaries. Values depend on grid topology (See description of
subroutine OBOUND, I0BTYP, and Appendix F).

Plot Specification Parameters. These variables specify constant
surfaces of J, K, or L to be plotted for the Nt plot of mesh M (See
ICKPLT and descriptior: of subroutine CHKPLT).

Grid search parameters. They specify limiting values of grid indices to
be used when searching for interpolation points contained in mesh M.
Defaults are maximum grid dimensions (See Appendix F).

Hole-Boundary Specification Parameter. This parameter specifies the
initial hole-boundary type (See IHBTYP) for holes introduced into
mesh M by the linked Mesh M1 (See JI.LHBI, etc.).

Code Parameter. This paramete: specifies the maximum allowable
number of comronent grids. It is used as an array dimension.
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Variable

MESHN

MESHNO

MHBS(M,M1)

MIMAX(M)
MKMAX(M)
MLMAXM)

MOBS(M,M1)

MPLOTS

NDCEND(M)

NLINK(M)

NMESH

NPLOTS(M)

AEDC-TR-85-64
Description

Input Parameter. It is the mesh number assigned a priori to a
component mesh. It is part of the data on the ext:rnal file containing
the input grid. It serves as an internal ch~ "k on input data.

Input Parameter. It is the mesh number of the component grid whose
parameters are contained in namelist GRDPRM. It is used as an
internal check to verify the proper correspondence with the input
component grid file.

Bookkeeping Parameter. This pointer points to the subset number of
the hole-boundary points of mesh M caused by mesh M1. In the present
hierarchy, M is a descendent mesh (Also see NSET, IPNTR, NPNTR).

Hierarchy Parameter. These parameters contain the number of points in
the three coordinate directions (£, », {) of each mesh M in the hierarchy
(See JDIM, KDIM, LDIM).

Bookkeeping Parameter. This is a pointer to the subset number of the
outer-boundary points of mesh M which are interpolated from values in

MI. (Also, see IPNTR, NPNTR, and NSETS).

Plot Paramete:. This counter records the total number of plots made
during an execution of PEGSUS.

hiierarchy Parameter. This parameter contains the number of
descendent grids of mesh M (See DCEND).

Hierarchy Parameter. 1his parameter specifies the number of grids
linked to mesh M.

Hierarchy Parameter. It specifies the total number of component grids
in the composite mesh (See MDIM).

Plot Parameter. This variable is the total number of check plots made
for mesh M.
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Variable

NPNTS

NSETS(M)

PRECUR(M)

SCALE

VNX(L D)
VNY(LJ)
VNZ(1,))

XB(l1,J)
YB(1,J)
ZE(,))

XFAC
YFAC
ZFAC

XKI)
YII)
ZI(I)

X0
YO
Z0

Description

Hierarchy Parameter. This parameter is the total number of points in
the composite grid.

Bookkeeping Variable. This variable has a value equal to the total
number of boundaries requiring interpolation that are embedded in
mesh M.

Hierarchy Parameter. It is a pointer to the mesh number of th-
precursor grid of mesh M. L. the present hierarchy, each mesh can have

only a single precursor.

Tranformation Parameter. It is a multiplicative scaling factor for input
component grids.

Boundary Surface Variables. These are the outward unit normal vectors

to the surface stored in XB, YB, ZB (Also see IBMAX and JBMAX).

Boundary Surface Variables. These are the coordinates of the boundary
surface (See IBMAX, JBMAX, and XB, etc.).

Plot Parameters. They specify the plot viewpoints.

Interpolation Variables (Work Arrays). They contain the interpolation
coefficient data for points interpolated from values in mesh M.

Transformation Parameters. These are the unscaled coordinates for a
translation of component grid coordinates.
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APPENDIX F
DESCRIPTION OF INPUT AND OUTPUT

INTRODUCTION

Input tc PEGSUS takes the form of binary data (i.e. the component grid data) and
namelist input. This appendix details the formats required of the binary data, the namelists,
associated variables, and their default values.

BINARY FILE INPUT

The default format for the component grid files is IFORMT = 1 on unit number [UNIT
= MESHN + 10)

Record Number Variable
1 MESHN
2 JMAX, KMAX, LMAX
3 (((X(J,K,L), J=1, JMAX), K=1, KMAX), L=1,
LMAX),

(((YUJ,K,L), J=1, IMAX), K=1, KMAX), L=1,
LMAX),

((Z(J,K,L), J=1, IMAX), K=1, KMAX), L=1,
LMAX)

where MESHN is the mesh number assigned a priori. This number is arbitrary except for
MESHN = 1 which must be the global mesh. IMAX, KMAX, and LMAX are the maximum
values of the J, K, and L indices (i.e. the number of points in each coordinate direction).
1 hese data are input in subroutine RGRID.

INPUT
A schematic of the input data is given in Fig. F-1, and a detailed description is contained

in the following subsections. The figure illustrates th2 order of input and the subroutine in
which it is read.
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TITLE

TITLE is read on a 10A8 format in subroutine INITIA. It is an 80-character description
of the composite grid.

HIERCY

HIERCY is a namelist aud is read in INITIA. It contains the following parameters:

DECEND (M,N) Mesh number of the Nth descendant of mesh M
TYPE: INTEGER, Dimensions: MDIM x MDIM
Default = 0.0

LINK (M,N) Mesh number of the grid linked to mesh M (not

used), Dimensions: MDIM x MDIM

MIMAX (M) Number of points in J, K, and L
MKMAX (M) coordinate directions for mesh M
MLMAX (M) Dimension: MDIM
NDCEND (M) Number of descendants of mesh M
Dimension: MDIM
Default = 0
NLINK (M) Number of grids linked to mesh M (not used)
Dimension: MDIM
Default = 0
NMESH Number of component grids
Default = 1
PRECUR (M) Mesh number of precursor of mesh M
Type: INTEGER, Dimension: MDIM
Default = 0
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GRDPRM

GRDPRM is a namelist which is read in RGRID. A separate GRDPRM namelist is
required for each component mesh. It contains the grid parameter specifications

IFORMT Integer flag denoting the format of the component
mesh input file; default and only acceptable
current value is 1; this parameter allows muitiple
formats for binary grid files.

Default: 1

ITRANS Specifies need to transform component mesh;
acceptable transformis are translation, rotation,
and scaling; NOTE: All transforms are referenced
to the composite grid coordinates (See Appendix
E)

Type: LOGICAL
Default: FALSE. (i.e. no transformation)

ALFAQ3) The rotation angles in degrees of each coordinate
BETA(Q3) axis of input grid relative to composite grid; the
GAMAQ3) angles are associated with the axis: ALFA/x-axis,
BETA/y-axis, and GAMA/z-axis (See Appendix
E)
Default: 0.0

Dimension: 3

X0 The origin shift of input grid in the input

YO (unscaled) coordinates (See Appendix E)

20 Default: 0.0

SCALE Multiplicative scale factor
Default: 1.0

MESHNO Mesh number corresponding to data in GRDPRM;
this number 1nust match MESHN on component
grid file
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CKPLOT

CKPLOT is a namelist which is read in subroutine CHKPLT. The namelist contains
specifications for plotting coordinate surfaces of the component grids. The para.neters are

ICKPLT Flag specifying that checkplots are to be made
Type: LOGICAL
Default: .FALSE. no plots

NPLOTS (M) Number of plots to be made from mesh M
Dimension: MDIM
Default: 0
JPLOT(M,N) A nonzero value specifies the surface to be plotted
KPLOT(M,N) in the Ntb plot from mesh M
LPLOT(M,N) Only one coordinate may be nonzero for each plot
Dimensions: MDIM ~ PLTDIM
Default: 0
XFAC Mayprification factors for coordinates of the view
YFAC point for the plots; large values provide less
ZFAC persbective

Default: 1000.0
HBOUN

HBOL 4 is a namelist which is read in subroutine HDATA. It contains specifications for
initial hole boundaries. They are

IHBTYP (M) Flag specifying topology and type of initial hole
boundary. Currently acceptable values are

100—Y arped spherical surface given by L
= constant and J along lines of
longitude;

110-—Warped hemispherical surface as
above with base at JH2(M);
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210—Warped cylindrical surface given by
L = constant and K along cylinder
axis; both end surfaces are inciuded;

220—Warped cylindrical surface as above
with open end at K = KHI(M)
Dimeasion: MDIM

Default: 0
JHI(M) Ranges of indices defining surface; those ending
KH1 (M) with | are initial value, and those ending with 2 are
LHI (M) final value of index: their significance depends on
JH2 (M) IHBTYP (M); typical values are
KH2 (M) IHBTYP = 110 JHI(M) = 1 JH2(M) = JMAX
LH2 (M) 120 KHI(M) = 1 KH2(M)
= KMAX
LHI(M) = 1 LH2(M) = LO,
LO < LMAX

= 210 JHI(M) = 1 JH2(M) = IMAX
220 KH1(M) = KI KH2(M) = K2
LHI(M) = 1 LH2(M) = L2
where K1, K2 ¢ [2,KMAX] and
L2 < LMAX

NOTE: 1. The parameters JHI(M), etc., specify
t>2 hole boundary caused by mesh M
in its precursor grid M1;

2. The lirked grid logic is not included;

3. All the current boundaries can be put
into a spherical surface coordinate.
Dimension: MDIM
Default: 0
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OBOUN

OBOUN is a namelist read in subroutine ODATA and contains the specifications to be
used to define the outer boundary of mesh M for the purpose of locating suitable
interpolation stencils in other grids. The parameters are

IOBTYP(M) Flag specifying topology and type of outer boun-
dary; currently acceptable values are

110—Warped spherical surface given by L
= constant and J along lines of
longitude;

120—Warped hemispherical surface as
above with base at JO2(M);

130—Warped hemispherical surface with
open base at JO2(M);

210—Warped cylindrical surface given by
L = constant and K the cylinder axis;

both end surfaces are included

220—Warped cylindrical surface as above
with open end at K = KO1(M)

Dimension: MDIM

Default: 0
JOI(M) Ranges of indices defining surface; those ending
KOl (M) with 1 are initial value and those ending with 2 are
LOl1 (M) final value of index; their significance depends on
JO2 (M) IOBTYP (M). Typical values are
K02 (M) IOBTYP = 110 JOI(M) = 1 JO2(M) = JMAX
LOZ (M) 120 KO1(M) = 1 KO2(M) = KMAX
LOI(M) =1 LO2(M) = LO
where
LO < LMAX
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- 210J01(M) = 1 JO2M) = JMAX
220 KOI(M) = KI KO2(M) = K2
LOI(M) = 1 LO2M) = L2

where

K1, K2 [2,KMAX] and
L2 < LMAX

BINARY OUTPUT FILES
PEGSUS generates two output files for input to XMER3D. They are the composite

mesh, and the interpolation and bookkeeping data. The data on these files are organized by
grid to facilitate separation into individual working files. The formats for each are described

in the following subsections.
Composite Mesh File

This file is written on unit 1. Each grid is written separately.

Record Number Format
1 MESH, JMAX, KMAX, LMAX
2 ((X(J,K,L), J=1, IMAX), K=1, KMAX), L=1,LMAX),

(«(YJ,K,L), J=1, IMAX), K=1, KMAX), L=1,LMAX),
(((ZJ.K.L), J=1, JIMAX), K=1, KMAX), L=1,LMAX).
MESH = 2,3, ....
Interpolation and Bookkeeping Data File
This file is written to unit 2. The data for each grid are written separately.
Record Number Format

I IBPNTS, IIPNTS, IIEPTR, IISPTR
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MESH = 2,3, ....

JIKD, KI(I), LI(I), DXINT(),DYINT(1)
DIINT(I), I = 1, IIPNTS)

(JB(I), KB(I), LB(I), IBC(I), I=1, IBPNTYS)
((IBLANK(J,K,L), J=1,JMAX),

K=1,KMAX),L=1,LMAX)

124



Format
#
Title 10A8
]
HIERCY Namelist
r—
SEARCH Namelist
I ( |
| GRDPRM l Namelist
|
' |
f—————————
| GRDPRM l
i |
| |
| |
GRDPRM '
' |
L -J
F———
CKPLOT Namelist
)
HBOUN Namelist
/—-—'—"H
OBOUN Namelist

Figui F-1. Input data for PEGSUS.
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Subroutine

INITIA

INITIA

INITIA

RGRID

Note: There is a separate GRNPRN
for each component mesh,

CHKPLT

HDATA

ODATA



